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A general deformation of a smectic C liquid crystal is composed of five different 
distortions, each of which can be made independently. Here we show that to each of 
these distortions we can assign a simple vector operator. Use of these five basis 
operators enables us to write down the elastic free energy density as a quadratic 
form consisting of nine terms. We also discuss how the nine elastic constants defined 
by the elastic energy expansion must fulfil certain restrictions in terms of inequalities 
and a specific tilt angle dependence. Assuming the smectic layers to be incompre- 
ssible, we examine how certain arrangements of the smectic layers can be stable due 
to an interplay between the incompressibility condition and the boundary 
conditions which we impose on the director. One such stable configuration is the 
wedge, where the smectic layers form parts of concentric cylinders with the common 
axis coinciding with the centre of the wedge. For such a system we discuss the 
different director configurations which can be achieved and their stability. We also 
discuss the possibility of inducing Frederiks transitions for some of these 
configurations and calculate the corresponding thresholds, thereby demonstrating 
the design of an experiment which would make it possible to measure those elastic 
constants which are related to the deformations of the smectic layers, constants 
which are normally difficult to determine experimentally. 

1. Introduction 
Liquid-crystalline systems consist of elongated molecules for which the long 

molecular axes locally adopt one common direction in space. This direction is generally 
described by a unit vector n, commonly called the director. Furthermore, smectic C 
liquid crystals are layered structures for which the director makes an angle 8 with 
respect to the layer normal. In order to describe an S, liquid crystal a unit vector a 
defining the layer normal and a unit vector c are normally introduced, the c-director 
defining the projection of the director onto the smectic planes. We will also find it 
convenient to define an angle 4 which describes the orientation of the c-director with 
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662 T. Carlsson et al. 

Figu re 1. Notation used in the present work. The average molecular direction, i.e. the director, 
is given by a unit vector n making an angle 0 with the layer normal a. The c-director, being 
a unit vector parallel to the projection of the director into the smectic planes, is denoted by 
c and can be described by the angle 4. The unit vector b, which is also confined to lie within 
the smecticplanes, is defined by the relation b=a x c. 

respect to some reference direction within the smectic planes. For mathematical 
convenience we also introduce a unit vector b (the C, axis of symmetry) which lies 
within the smectic planes and is perpendicular to c. In order to obtain an unambiguous 
definition of the sign of b we introduce b as 

b = a x c .  (1) 
The notations defined here are pictured in figure 1. 

An indisturbed, relaxed S, liquid crystal will form flat layers and have a c-director 
which is uniform in space, that is, it is described by the two vectors a and c being 
constant. If we apply some conflicting boundary conditions or an external field to the 
system, this state can be perturbed thus causing an elastic deformation. There are two 
principally different ways of imposing elastic deformations on a S, liquid crystal (we 
only consider the case of constant layer thickness). First, we can deform the smectic 
layers keeping the c-director constant with respect to the layers. Secondly, we can 
rotate the c-director around the layer normal keeping the layers unchanged. To each of 
these two types of deformations a set of elastic constants is associated. In the notation 
we will use, a set of elastic constants Ai is assigned to describe the layer deformations 
while another set Bi is assigned to describe c-director rotations. The elastic free energy 
density also contains coupling terms between these two types of deformations and these 
will be associated with the elastic constants Ci. 

While, for a given layering of the smectic planes the only requirement for the c- 
director is that it is a continuous function in space (disregarding the possibility of 
formation of disclinations), the layer normal a has to fulfil a more severe constraint. If 
we are dealing with a system of constant layer thickness which is also assumed free from 
dislocations the relation 

Vxa=O (2) 
must hold [l]. This drastically restricts the possible ways to arrange the smectic layers 
in space. The simplest arrangements of the smectic planes which fulfil equation (2) other 
than undistorted planes are layers which form concentric cylinders or spheres or parts 
thereof. More complex configurations satisfying equation (2) consist of the focal conics 
and the Dupin cyclides [2,3]. Once the layers have formed one of the allowed 
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S ,  Frederiks transitions in a wedge 663 

configurations, we may find them to be stable in the sense that all possible 
perturbations of a compatible with the given boundary conditions will violate the 
constraint V x a = 0. We use the term geometrically stable to describe such configur- 
ations. The only way to perturb the layers of such a configuration under the constraint 
(2) would be to compress or dilate the layers, that is, to introduce a deformation which is 
associated with a very large elastic energy [2]. For this reason such compressions or 
dilations will be suppressed. 

When measuring the elastic constants one of two different methods is normally 
used. One way is to prepare the system in an equilibrium configuration and then change 
some of the external conditions (often by means of an electric or magnetic field) in order 
to find some threshold for which the configuration of the system transforms into a new 
state of lower energy. We can also perform dynamic experiments where frequently the 
response time of the system is measured by applying an alternating electric field. 
However, due to the facts just discussed, all reported measurements of the elastic 
constants of S, liquid crystals only consider c-director distortions and no values of the 
constants A,  (or Ci) have been reported [4-71. This results from the fact that for the 
configurations used in previous measurements the layers are geometrically stable in the 
sense defined and layer deformations are suppressed if we do not allow for compression 
or dilation of the layers. 

In this paper we will demonstrate how to find a geometrical arrangement which 
makes it possible to perform a Frederiks transition type of experiment for which the 
threshold will depend partly on the Ai constants, thus allowing us to design an 
experiment for measuring them. The outline of the paper is as follows. In 5 2 we review 
the elastic free energy density of S, liquid crystals and define the set of elastic constants 
we use for solving the proposed problem. We also present a suitable set of vector 
operators through which the expression of the elastic free energy density becomes fairly 
simple. The temperature dependence of the elastic constants enters primarily through 
the tilt angle dependence and we discuss how this can be deduced from symmetry 
arguments. In 0 3 we discuss some possible equilibrium configurations for a S, liquid 
crystal contained in a wedge. We also discuss the stability of these configurations. By 
assuming an electric field to be applied over the wedge in an appropriate way, we then 
derive, in 9: 4, the threshold of a Frederiks transition which the system can exhibit. From 
this expression we will see that even if the configurations of the system which we study 
are geometrically stable we can deduce some information about the elastic constants 
connected with the layer deformations (the Ai constants) by performing the proposed 
experiment. 

2. The elastic free energy density of the S, phase 
2.1. An expression for the elastic energy in terms of vector operators 

The elastic free energy density of S, liquid crystals has been discussed by a number 
of authors [l, 8,9]. A common feature of the different approaches is that nine elastic 
constants are required to write down the complete bulk elastic energy of the system. In 
this section we review these approaches and show how we can write down a set of 
vector operators suitable to describe the elastic deformations which can be exhibited by 
the system. To describe a general deformed state of the system we have to specify the 
spatial variations of the two unit vectors a and c subject to the constraints a * c = 0 and 
V x a = 0. However, by introducing the vector b as in equation (1) it is clear that if we 
specify the spatial dependence of any two of the three vectors a, b and c we have defined 
the configuration of the system unambiguously. At first sight it seems to be more 
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664 T. Carlsson et al. 

natural to formulate an elastic theory in terms of the two vectors a and c, which 
correspond to the two observable physical quantities used to define the system. We will, 
however, show that if we want to achieve a simple mathematical formulation of the 
problem which we consider it is preferable to write down the elastic energy in terms of b 
and c. 

The first formulation of the S, elastic energy was given by the Orsay Group [l]. In 
their formulation they introduce a local coordinate frame oriented in such a way that 
the z axis coincides with the layer normal while the c-director is always parallel to the x 
axis (cf. figure 2 (a)). The elastic deformations are then described by a rotation vector R. 
Rotations corresponding to the components R, and R, will always affect the direction 
of the layer normal a and thus correspond to layer deformations. Rotations 
corresponding to R, will on the other hand leave a unaffected thus corresponding to 
rotations of the c-director. Although the notation of the Orsay Group permits a very 
clear physical interpretation it is, unfortunately, not well suited as a starting point for 
doing calculations. We prefer therefore to express the elastic deformations of the system 
in terms of a set of vector operators which are allowed to act on the two vectors b and c. 
In figures 2(bHf’)  we show the five different eigen deformations the system can 
undergo. We also give corresponding operators in terms of our b - c formulation and, 
as a comparison, in terms of that of the Orsay Group. For simplicity, in the figure we 
only show one smectic plane as seen from above and the corresponding c-director as it 
varies within this plane. First, we can imagine two different ways of bending the planes, 
still keeping the c-director unchanged with respect to the plane. In figure 2(b) the 
smectic plane bends in such a way that the layer normal a changes as we go along the 
direction of the c-director. This corresponds to b . V  x c#O or aRY/i3x#O in the 
notation of the Orsay Group. If, on the other hand, we bend the planes in such a way 
that a changes as we go along the direction perpendicular to the c-director, we have the 
situation pictured in figure 2 (c). This corresponds to c V x b # 0 (dR,/ay #O). Keeping 
the layers planar we can rotate the c-director either as we move parallel (see figure 2 ( d ) )  
or perpendicular (see figure 2 (e)) to it. This corresponds to V - b # 0 (dR,/ax # 0) and 
V * c # 0 (dR,/dy # 0), respectively. Finally, if we keep the c-director constant in each 
plane, rotating it as we go along the layer normal we have the situation pictured in 
figure 2 ( f )  where *(b - V x b + c V x c )  # 0 (aR,/dz #O). The elastic free energy density 
can now be expressed in terms of these five deformations and of some cross products 
between them. The symmetry of the system will limit the number of corresponding 
terms since under the symmetry operations of the S, phase the three terms 
V .  c, b * V  x c and c - V  x b transform in one way while V - b and $(b*V x b +  c . V  x c) 
transform in another. As the elastic energy of the system must be unaltered under a 
symmetry operation we can only construct cross coupling terms by combining 
operators within each of these two groups. The elastic energy of the system can thus be 
written as 

W=$A,,(b.V x c ) Z + $ A z l ( c . V  x b)’+Al1(b*V x c ) ( c * V  x b) 

+ i B 1 ( V  * b)’ + i B , ( V .  c)’ ++B,[i(b. V x b +  c * V  x c)], 

+B,,(V.b)[+(b-V x b + c - V  x c)] 

+ C , ( V * c ) ( b * V  x c)+C,(V*c)(c .V x b). (3 a) 

By this equation we have defined the nine elastic constants of the S, phase. An 
expression in the same spirit as equation (3 a) has been derived by Rapini [lo]. We 
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S ,  Frederiks transitions in a wedge 665 

A12 / =- 
p.vxy # 0 
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- (b. Vxb +g. V X ~ )  # 0 2 -  

v.c # 0 

# O  # O  - an, 3% 
aY aZ 

__ 

Figure 2. (a) The local coordinate frame introduced for describing elastic deformations of a Sc 
liquid crystal. The flat, undistorted smectic layer is parallel to the x y  plane with the c- 
director pointing in the x direction. ( b H f )  The five elastic eigen deformations of a S, liquid 
crystal. To each of the deformations is given the corresponding vector operator, the Orsay 
Group notation [l] and the associated elastic constant. 

should also compare equation (3 a)  with the Orsay Group’s way of writing the S, free 
energy density as [l] 

Since our definition of the elastic free energy density is given in a standard quadratic 
form, there is a slightly different definition of the constants A , ,  (= -$A!,)  and 
C, (= - C:) in equation (3 a)  from that of the Orsay Group. In order to  see that our 
equation (3 a), apart from the differences in the terms A ,  , and C ,  mentioned previously, 
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666 T. Carlsson et al. 

is in fact identical to equation (3 b) in the Orsay Group’s notation we must note the 
relations 

an, an,asz, 
( a x )  ay ax 

aQ, an, an, an, 
ay ax ax ax 

-3div [(div a)a] = - + - - 

div [a div c -(Vc)a] = ~ ~ + ~ ~ 

which allow us to transform (neglecting surface energies) the two terms (dQ,/dx)’ and 
(dn,/dx)(dn,/dx) appearing in the Orsay Group’s version of the elastic energy into a 
form corresponding to the one which we have written in our approach. 

2.2. Tilt angle dependence of the elastic constants 
The temperature dependence of the elastic constants has two contributions, one due 

to the temperature dependence of the forces by which the particles of the system 
interact and one due to the tilt angle dependence. The latter dependence has been 
discussed by Dahl and Lagerwall [S]; we repeat their arguments briefly here and 
advance the discussion a little further. The elastic energy of the system must be 
invariant if we change the tilt 8 to - 8. If at the same time we keep the layer normal a 
unaffected this implies that the elastic energy given by equation (3 a) must be invariant if 
we simultaneously make the changes c+ - c and b+ - b. This implies that the 
coefficients A12, A , , ,  B , ,  B ,  and B ,  must be even functions of 8 while the 
coefficients BI3, C ,  and C ,  must be odd functions of 8. In the smectic A phase (where 
8 = 0) only the A constants should remain (we can still make layer deformations) while 
all of the other coefficients must vanish. Expanding the elastic coefficients in powers of 8 
we thus must be able to write the A coefficients in the form Ai z Ki + A,$’ and the three 
coefficients B ,  to B ,  as Bi=BiQ2. The coefficient B, , ,  being odd in 8, cannot have a 
linear dependence in 0 because of an inequality (see equation (8 c)) which is derived in 
9 2.3. However, we can allow the C coefficients to be linear in 8. Further, in the S, phase 
the elastic energy is given by [l] 

w A  =*K(V * a),. ( 5 )  

The elastic energy of the S, phase reduces to 

W = $ [ K , , ( ~ . V X C ) ~ + K ~ ~ ( C - V X  b ) 2 + 2 K 1 1 ( b . V ~  c ) (c -VX b)], ( 6 a )  

when the system approaches the S, phase and we take the limit as 8+0 in equation 
(3 a). Moreover, the vector identity 

(V .a )2= (b .Vxc)2+(c+Vxb)2 -2 (b .Vxc) (c -Vxb)  (6 b) 

can be proved [lo] to be valid for the three vectors a, b and c. By comparing 
equations (5) and (6) we notice that the constants K i  must fulfil the relations 
K = - K , = K if the expressions we have for the S, and S, elastic energies are 
to coincide at qCsA. We are thus able to write down the tilt angle dependence of the 
elastic constants as 

= K 
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S ,  Frederiks transitions in a wedge 667 

c, = c,e, c, = c,e, 
where the constants K ,  A ,  Bi and Ci can be assumed only to be weakly temperature 
dependent. 

2.3. Inequalities for the elastic constants 
The values of the elastic constants are limited by a set of inequalities. These 

inequalities are already given in the original paper by the Orsay Group. However, there 
is a misprint in one of the inequalities given and in view of this we now sketch briefly the 
derivation of these inequalities. The elastic energy given by equation (3 a)  is a quadratic 
form of five independent variables X i ,  each of which corresponds to one possible 
independent distortion of the system. Each coefficient corresponding to one of the five 
pure deformations must be positive as such a deformation must produce a positive 
elastic energy if the undistorted flat layer is the stable equilibrium of the system. 
Concerning the cross coupling coefficients we reason as follows. Imagine we make a 
deformation of the system consisting of only two of the five eigen deformations. Let us, 
as an example, study the case of a pure layer deformation. The corresponding elastic 
energy can then be written as 

2w=A, ,X:  + A , , X :  + 2 A , , X , X , ,  

where we have introduced the variables X ,  and X ,  as abbreviations for the 
corresponding vector operators. Such a quadratic form can be written in matrix 
notation as 2w = XTAX where 

x =  (I:) 
is a state vector and A is the symmetric matrix 

The given quadratic form is positive definite if, and only if, the leading minors of A (that 
is, A , ,  and the determinant of A) are positive. We thus conclude that the inequality 
A, ,A, ,  - A i l  > O  must be fulfilled. By making an analogous argument for the other 
three cross coupling terms in equation (3 a)  we finally arrive at the inequalities 

Bl, B 2 ,  B3 >O, (8 a)  

A,,A,,  -&1 >o, 
B1B3 - Bf3 > O ,  

B,A, ,  - Ci >O, 

B,A,, - C: > O ,  

which the elastic constants must fulfil, where the inequality in equation (8 d )  is different 
from the corresponding one given by the Orsay Group. More complicated inequalities 
may be derived in the same manner by studying deformations containing three of the 
basic deformations. By introducing the tilt angle dependence of the A constants (see 
equation (7 a)) we can reformulate inequality (8 b) as 

A,,+A,, + 2 A , ,  >o. (9) 
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668 T. Carlsson et al. 

Moreover, it is clear from equation (5) that the relation 

K>O 

must also be valid. 

2.4. Summary 
To study the elastic properties of the S, phase we need a nine term elastic energy 

which we take to be that given by equation (3 a). The elastic constants of the system 
must fulfil the inequalities given by equations (8) to (10). The main temperature 
dependences of the elastic constants enter through their tilt angle dependence and to 
lowest order in the tilt we can express this according to equations (7). We also note that 
the tilt angle independent parts of the A constants are related, as given by equations 
(7 4- 

3. The wedge problem-elastic energy and stability of a S, liquid crystal in a wedge 
3.1. Geometrical arrangement of the smectic layers 

For the calculations in this paper we consider a S ,  liquid crystal confined in a wedge 
where we have arranged the smectic planes as shown in figure 3. We assume the liquid 
crystal to be bounded by two glass plates at an angle B. We further assume that the 
surfaces of the glass plates have been treated in such a way that the director will be 
forced to point in a certain direction (strong anchoring) which we choose to be parallel 
to the plates. In order to describe the problem we find it convenient to introduce a 
cylindrical polar coordinate system (r,  E, z) where r measures the distance radially 
outwards, a is the polar angle and z is the coordinate of the direction for which we 
assume translational symmetry of the system (we only impose boundary conditions on 
the bounding plates which are assumed to be infinitely extended in the z direction). The 
basis vectors of the coordinate system are such that P will coincide with the layer normal 
while the smectic planes are parallel to the az surface with B always pointing in the 
direction in which the layers are bending and 2 being parallel to the axis of the wedge. In 
order to describe the c-director we introduce an angle 4, which is defined as the angle 
between the c-director and the z axis, taking 4 positive as indicated in figure 3. With 
these assumptions and the definition of b given by equation (1) we can write down the 
following ansatz for a, b and c expressed in cylindrical coordinates 

A a = r, 

b= -Bcos4+isin4, (11 b) 

c =ti sin $I + i cos 4, (11 4 
where the only degree of freedom assumed for the system is 4 = 4(r ,  a). 

We now must investigate the circumstances under which we can achieve the 
configuration of the smectic layers assumed in figure 3. We require the smectic layers to 
be parts of cylinders with a common axis coinciding with the centre of the wedge. For a 
given boundary condition (i.e. the director is assumed to adopt a prescribed direction 
nb at the boundary) and for a given tilt 8, the direction in which the layer normal can 
point at the boundary is restricted by the relation 

sin 8= la x nbJ. (12) 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
2
5
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



S ,  Frederiks transitions in a wedge 669 

By assuming nb to be parallel to the bounding plates and letting the preferred direction 
of the director make an angle 6 with respect to 3, i.e. suppose the boundary condition to 
be 

nb = 3 cos 8 + i sin 0, (13) 

we will achieve the configuration of figure 3 with the c-director varying in space, where 
c = i (4 = 0) is one possible equilibrium configuration of the system. 

We have given one boundary condition for which the assumption of the smectic 
layers pictured in figure 3, i.e. a = P, is compatible. It is easy to verify that the constraint 
V x a = 0 is fulfilled in this case. There is, however, one distortion of this configuration 
which would allow a to relax while maintaining the constraint V x a = 0. This is the case 
where the curvature of the smectic layers is decreased in such a way that the common 
axis of the cylinders moves to the left in figure 3, while remaining in the plane of 
symmetry of the wedge. This is, however, not allowed if we assume strong anchoring of 
the molecules at the bounding plates. We thus conclude that the boundary condition 
which we have introduced forces the system to be geometrically stable according to the 
definition in 0 1, i.e. the layers are forced to remain unchanged due to an interplay 
between the constraint V x a = 0 and the boundary conditions. 

I 
/ / /  

/ / /  

/ / /  

/ / /  

/ / /  

/ / /  

/ / /  

/ / /  

/ / /  

/ / /  

/ / /  

/ / /  

/ / /  

/ / /  

/ / /  

Figure 3. Set up of the wedge configuration. In the left hand part of the figure we see the actual 
wedge and the curved smectic layers, while the right hand part visualizes one smectic layer 
as seen when looking into the wedge. The coordinate system used is a cylindrical one for 
which the basis vectors 8,  d and 2 are oriented as shown in the right hand part of the figure. 
The smectic planes are assumed to be parts of concentric cylinders with the common axis 
coinciding with the centre of the wedge and the layer normal a pointing in the r direction. 
The angle 4 describing the c-director is defined as the angle between the z axis and the c- 
director as shown in the figure. 
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3.2. The wedge elastic energy 
We now give the elastic energy density for the general case depicted in figure 3 for a 

S, liquid crystal contained in a wedge. Upon substituting the ansatz of equations (1 1) 
into equation (3 a) and by supposing 4 = @(r, a) we find the elastic free energy density to 
be 

w = f ( l / r ’ ) [ ~ , ~  sin4 4 + A , ,  cos4 4 - 2 A , ,  sin’ 4 cos’ $1 
++(l/r2)[B1 sin’ 4+B,cos2 4]4,2,++~~4:~ 
+(1/l)Bl3 sin44,r4,a+(1/r2)[C1 sin’ ~ -C ,cos ’  41~0~44, .  (14) 

In this equation the notation 4,r and denotes the partial derivatives of 4 with respect 
to r and a, respectively. The first bracket of terms in equation (14) is connected to the 
bending of the layers and can be rewritten as 

(15) wlayer =(1/(2rZ)C(A 12 + A  11) sin4 4 + (A21 + A 11) c0s4 4 - A ,  11. 
We thus see that apart from the constant contribution 

-A,, /(2r2)=(K-~1182)/2r2, 

the A constants always enter the elastic energy by the two combinations A , ,  + A ,  , and 
A,,  + A , , .  Introducing the tilt dependence of these constants according to equation 
( 7 4  we can write 

where we observe that the tilt independent part K of the A constants exactly cancels in 
the 4 dependent parts of wlayer. 

To calculate the equilibrium configuration of the system we shall minimize the total 
elastic energy 

W= SvwdV= wrdrdadz. 

We define the effective elastic energy density we = wr which, if we introduce the tilt 
dependence of the elastic constants (see equations (7) and (16)), can be rewritten as 

V 

we=rw= -Al,/(2r)+ 1/(2r)[(A,,+A,,)sin44+(A,, +A,,)cos4+]e2 

+ 1/(2r)[~, sin2 4 + B, cosz 4 1 ~ 4 ;  + : E , P ~ :  

+B,383sin44,r4,.+(l/r)[C, sin’ 4-C’ c o s ’ ~ ] ~ c o s ~ ~ , .  (17) 

The effective elastic free energy density we in this equation is the expression which we 
shall use in our calculations. 

The starting configuration for these calculations is that given by a = i  and 
c=2 (4=0). However, from equation (17) we note that for a constant $ the elastic 
energy of the system is minimized only for certain values of 4. The relevant quantity to 
minimize in order to calculate the stable equilibrium angle 4o is clearly 

2 

wrye*(4) = 1/(2r)[(AlZ +A, ,) sin4 4 + (Azl + A, ,) c0s4 416’. (18) 
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S ,  Frederiks transitions in a wedge 67 1 

The minimization of wtyer  corresponds to calculating the stable equilibrium angle 4o in 
the case when the system is not subject to any boundary conditions. As we have 
discussed the boundary conditions are essential for stabilizing the formation of the 
cylindrical structure of the layers within the wedge. If, however, we study a system for 
which the layers form concentric cylinders the equilibrium angle 4o obtained by 
minimizing w Y r  is feasible and is obtained from dw:Yer/d4 = 0 as 

sin 4 cos 4[(AlZ + A,,) sin2 4-(AZl +A, ,) cos’ 41 =O. (19) 
Before we can conclude which of the possible solutions of this equation corresponds to 
a minimum of the elastic energy of the system we note that inequality (9) permits at 
most one of the two quantities A, +A, , and A,, + A, to be negative. This implies 
that, regarding the stability of the system, there are three different cases which can 
occur. (Note that due to the symmetry of the system the solutions 4 = 0 and 4 = 71 

represent the same configuration; the same is true for 4 = 71/2 and 4 = 37c/2. We do not 
consider these trivial solutions in the later discussion.) 

Case I: A,,+A,, > O  and A,, +A,, > O  

The stable equilibrium angle is given by 

tan2 4 0 = ( ~ 2 1 + ~ , , ) / ( ~ 1 * + ~ 1 , )  

while the solutions 4 = 0 and 4 = 71/2 correspond to maxima of the elastic energy of the 
system. 

Case 2: A,,+A,,>O and A,,+A,,<O 
The stable equilibrium angle is given by 40=0 while the solution 4 0 = ~ / 2  

corresponds to a maximum of the elastic energy of the system. 

Case3:  A,,+A,,<O and A,,+A,,>O 
The stable equilibrium angle is given by 4 0 = ~ / 2  while the solution 4 = 0  

corresponds to a maximum of the elastic energy of the system. 

Returning to the wedge problem we now conclude that if we examine a wedge where 
we have strong anchoring of the director at the boundaries, which conflicts with the 
stable equilibrium angle &, we should not expect the configuration 4 =constant to be 
stable under all circumstances. What can happen is that the c-director rotates in order 
to seek out the angle do. This will create a non-uniform configuration with $,,#O 
which will be associated with the elastic energy 

If the wedge angle is small enough the elastic energy associated with the c-director 
rotation will be larger than the gain of layer energy and the configuration 4 =constant 
will be stable. For a large enough wedge angle p on the other hand a transition into a 
state with a non-uniform 4 will be energetically favourable. We thus expect a transition 
where the control parameter is the wedge angle p. In the next section we obtain the 
governing differential equations of the system and calculate the critical wedge angle p 
for which the configuration c = 2 (4 = 0) becomes unstable against rotations of the 
c-director. 
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672 T. Carlsson et al. 

4. Frederiks transition in a wedge-calculation of thresholds and stability 
considerations 

We assume throughout this paper that the dielectric anisotropy E, of the liquid 
crystal which is studied is positive. Preparing such a system in the wedge configuration 
of figure 3, we can induce a Frederiks transition by applying a voltage across the 
bounding plates of the wedge. In this section we derive the threshold of this transition. 

4.1. The electric j e ld  free energy density 
The electric free energy density which arises when an electric field is applied over a 

liquid crystal is given by [2] 

we= --1& 2 a & 0 ( n.W2, (21) 

where E, is the dielectric anisotropy of the liquid crystal and c0 is the permittivity of free 
space. In the geometry of figure 3 the director is given by 

n = i cos 0 + B  sin 0 sin 4 + f sin 8 cos 4. (22) 

The unperturbed configuration is assumed to correspond to b = O  and thus the 
corresponding director configuration is given by 

n =icos 8+ i sin 8. 

In order to induce a Frederiks transition we shall apply an electric field E = EB. This 
field will be achieved if we apply a voltage U across the bounding plates in which case 
we obtain 

U ,  E=-a. 
rB 

The electric free energy density for a general configuration of the system is now given by 
equations (21) to (23) as 

When minimizing the total free energy we integrate we over the volume of the system. As 
in the derivation of the effective elastic free energy density of equation (17) a scaling 
factor r will enter the electric free energy density. We thus introduce the effective electric 
free energy density 

u2 
w: = --l~ E - sin2 8 sin2 4. (25) 

a “rB2 

4.2. The Euler-Lagrange equations-calculation of the Frederiks threshold 
In order to minimize the total free energy of the system we must find the 

configuration +(r,  a) which minimizes the integral 

W= w(4) dr da dz, s 
where, using equations (17) and (25) 

w= we + w:. 
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S, Frederiks transitions in a wedge 673 

This problem is solved by the Euler-Lagrange equation 

By substituting equations (17) and (25) into this equation we derive the governing 
equation of the system 

r2B34,,,+(B1 sin2 4+B2cos2 4)4,,, +$(El --B,)si11(24)(4,~)’ 

+ B , , r 8 c o s ~ ~ , a ~ , , + 2 B , , r ~ s i n ~ ~ , ~ r + B , r ~ , ,  

+ 2[(A2, + A, 1) cos2 4 -(A, , + A, ,) sin2 41 sin 4 cos 4 

- sin$cos+=O. (27) (T 
In deriving this result we have made the approximation sin 8 M 8 in the term related to 
the electric field in order to observe that the 8 dependence actually disappears for most 
terms. The 8 dependence only remains in the B13 terms. These terms may, therefore, be 
neglected if we study the system relatively close to the transition to the S, phase. 

As we are interested in the system close to the Frederiks threshold we assume 4 to 
be small; linearizing equation (27) we obtain 

B 3 r 2 4 , r r + B 2 4 , a a + B 3 r 4 , r + 2 ( A 2 ,  + A , ~ ) ~ + E , E O  4=0- (28) (3 
As no boundary conditions are assumed to be applied in the r direction, the simplest 
solution we can achieve is that for which 4,, is zero, i.e. #(r, a)= $(a). Equation (28) then 
reduces to 

B 2 4 , a a  + 2(A2 1 + A, 114 + 4 =O- (29) (3 
In order to fulfil the boundary conditions (4=0 for a=O,/l) we make the ansatz 

Inserting this ansatz into equation (29) we derive the Frederiks threshold as 

E,EO u,” = 7?B2 - 2/12(A2 1 + A, ,). (31) 

We see therefore that by varying the wedge angle /?, we can determine the constants B, 
and A,, +A, ,  by measuring the Frederiks threshold for each value of 8. 

4.3. Derivation of the Frederiks threshold b y  energy considerations 
In this section we sketch briefly how by an energy consideration we can derive the 

threshold of the Frederiks transition by a more direct method than that used in the 
previous section. Let us explicitly calculate the total free energy of the system when we 
make a small perturbation from the starting configuration 4 = 0. The simplest 
perturbation we can make, fulfilling the boundary conditions is that given by equation 
(30), assuming 4m to be a small quantity. The total free energy of the system is then 
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674 T. Carlsson et al. 

where we and w: are given by equations (17) and (25), respectively, and, in order to 
perform the integration, we further assume the system to be bounded in the r and z 
directions. Only keeping the terms to lowest order in 4,,,, equations (17), (25), (30) and 
(32) give 

where we again have approximated sin8 by 8. The system will lower its energy by 
adopting a finite 4,,, if the factor multiplying 4: in equation (33) is negative. This will be 
the case of the applied voltage U is large enough and from equation (33) we immediately 
derive the expression of the Frederiks threshold. By comparing the result thus obtained 
with equation (31) we note that by this energy method we have simply rederived the 
previously obtained threshold for the transition. 

4.4. Stability of the assumed conjiguration-derivation of the critical wedge angle 
As we discussed at the end of !j 3.2, the configuration c = i need not be a stable 

equilibrium in the wedge even under a zero electric field. We are now in a position to 
calculate the critical wedge angle B,, which is the largest wedge angle for which the 
assumed configuration is stable against distortions of the c-director. From equation (33) 
we find the total free energy of the system in the absence of an electric field to be 

w= D ,  +D,4:[B,nZ -2(A,, + A,,)P23, (34) 
where D ,  and D ,  are constants which are irrelevant to the present discussion. This 
result expresses the fact that there is competition between two contributions to the 
elastic energy of the system. The B, term corresponds to the energy associated with a c- 
director which is non-uniform with respect to the smectic layers. If the term A,, +Al , is 
positive then it will decrease the elastic energy for 4,,, # 0. This term originates from the 
fact that for this sign of A,, + A, , the elastic energy associated with the bending of the 
smectic layers (see equation (1 8)) is not at a minimum for the configuration 4 = 0. If the 
original configuration should be stable the total free energy of the system must increase 
with $,,, and thus the coefficient multiplying 4: in equation (34) must be positive. This 
leads to a limitation for B given by 

B<nJCB2/2(A21 +A,,)I. (35) 
As we discussed in !j 3.2, we do not know the sign of A,, +A,,. If A,, +A, , is negative 
the configuration 4 = 0 is a stable equilibrium and inequality (35) becomes irrelevant. If 
on the other hand A,, +All  is positive the inequality (35) gives a limitation of how 
large the wedge angle p can be if we want the configuration 4 = 0 to be stable. However, 
until the constants B, and A,, +A,, have been measured it is not possible to decide 
whether or not inequality (35) provides a real limitation to the magnitude of the feasible 
wedge angle. (If the critical wedge angle is found to be larger than 2n the limitation of 
equation (35) becomes irrelevant.) 

5. Discussion 
As is shown in figure 2, a general elastic deformation of a S ,  liquid crystal can be 

regarded to be composed of five different distortions, all of which can be made 
independently from each other. Two of these distortions represent deformations of the 
smectic layers (see figures 2 (b) and (c))  while the other three represent rotations of the c- 
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S ,  Frederiks transitions in a wedge 675 

director (see figures 2 ( d H f ) ) .  The bulk elastic free energy density of the system can be 
expressed in terms of these five deformations and will, altogether, consist of nine terms. 
Of these nine terms five correspond to the eigen deformations described previously, 
while the other four represent the cross-coupling terms which are allowed by the 
symmetry of the system. To each of these five eigen deformations we can assign a vector 
operator, which is also given in figure 2. By expressing these vector operators in terms of 
the two unit vectors b and c (see figure 1) rather than a and c (which at first sight might 
be thought to be more natural) we have shown how we can achieve a particularly 
simple expression for each operator. The elastic free energy density of the system can be 
written as a quadratic form in terms of the five vector operators (see equation (3  a)), 
which closely resembles that given by Rapini [lo]. By the use of the operator identities 
(see equation (4)) we have also shown that, neglecting surface energies, our form of the 
elastic energy supplements and extends the one previously derived by the Orsay Group 
El]. The nine elastic constants which are defined through equation (3 a) must fulfil 
certain restrictions. Firstly, by the symmetry of the system, we expect a tilt angle 
dependence of the elastic constants as given by equations (7). Moreover, as the elastic 
energy represents an expansion around a stable equilibrium, the quadratic form of 
equation ( 3 a )  must be positive definite. Thus the elastic constants must fulfil the 
inequalities of equations (8) to (10). By demanding that the elastic energy of the S, phase 
should reduce to that of the S, phase (see equation (5)) in the limit as 8+0 we have 
shown in Q 2.2 that the tilt independent parts of the elastic constants describing the layer 
deformations (the A constants) must be related as stated by equations (7 a). For this 
reason, the inequality (8 b) can be replaced by two other inequalities, providing one 
inequality relating the tilt dependent parts A of these constants (see equation (9)) and 
one inequality merely stating that the tilt independent part K of these constants must be 
positive. 

When preparing a sample of S, liquid crystal the possible ways of arranging the 
smectic layers are restricted by the constraint V x a = 0. By specifying the boundary 
conditions for the director and demanding the layer thickness to be constant, we find 
that most configurations we can achieve are geometrically stable, i.e. the smectic layers 
are forced to remain unchanged due to an interplay between the constraint V x a = 0 
and the boundary conditions. Thus most dynamic experiments performed on S, liquid 
crystals only involve the rotation of the c-director and to the best of our knowledge no 
measurements of the elastic constants relating to the layer deformations have been 
reported in the literature. In a paper by Rapini [lo] a series of Frederiks transitions for 
S, liquid crystals with planar layers have been considered. In Rapini’s paper the 
calculated thresholds generally contain all of the nine elastic constants included in the 
theory. However, the distortions of the smectic layers assumed in these calculations 
violate the constraint V x a = 0. Thus the thresholds calculated by Rapini are more of 
academic interest and cannot be used to measure all of the nine elastic constants 
involved in the expression of the S, elastic energy. As is also pointed out by Rapini, all 
transitions considered in his paper which involve a coupling of layer deformations and 
c-director rotations would, as soon as they have been initiated, involve layer 
compressions which demand a very large elastic energy. Thus the layer deformations 
will immediately be suppressed and the transition will continue as a pure c-director 
rotation. As a result of this Rapini calls such transitions ghost transitions, i.e. we can 
establish a theoretical threshold for them but we cannot achieve them in reality. For 
this reason the Frederiks transitions considered by Rapini will not permit us to 
measure any elastic constants other than those related to the c-director rotations. 
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676 T. Carlsson et al. 

In this paper we have shown how, by assuming the wedge geometry of figure 3 
combined with the boundary conditions given by equation (13), we can design an 
experiment where the threshold of the Frederiks transition considered also involves the 
A constants despite the distortions of the system consisting only of pure c-director 
rotations. To our knowledge this is the first experimental set up suggested which would 
make it possible to extract any information about the A constants. The elastic free 
energy density in the wedge is given by equation (17). From this expression we see that 
the elastic constants which we can expect to deduce in this case (apart from the B 
constants) are the combinations A,, +A,, and A,, +A,,. With the boundary 
conditions we have assumed we further see that by measuring the critical wedge angle 
(if it exists) given by equation (35) and by measuring the wedge angle dependence of the 
threshold for the Frederiks transition (see equation (31)) we will in both cases only gain 
information of the elastic constants B, and A,, +A, 1. If we desire information about 
the elastic constant A,,+A,,, equation (17) tells us that we should instead use a 
boundary condition which is compatible with an undistorted director configuration 
c = d (4 = 4 2 ) ,  i.e. we should confine the director in the ra plane at the boundaries, 
demanding it to make an angle 0 with the plates. This boundary condition corresponds 
to 

(36) nb= 3 cos 8+ B sin 0. 

Expanding the elastic free energy density around 4 = 4 2  we can, in a similar way to 
that carried out in $4.4, derive the largest possible wedge angle for which this 
configuration is stable against rotations of the c-director (provided A,, +A, , > 0) as 

If the wedge angle does not exceed the critical angle then a Frederiks transition induced 
for this configuration would give information about the constants B, and A,, +A, ,. 
There is, however, one fundamental difficulty with performing this experiment. 
Generally, the Frederiks threshold is voltage dependent, implying that the critical 
electric field is inversely proportional to the thickness of the sample. However, since the 
effective thickness of the sample increases as we travel radially outwards from the 
centre of the wedge, we see that when applying a voltage U across the two plates, as for 
the transition discussed in $ 4, the electric field will decrease inversely with r according 
to equation (22). Thus the transition will be induced over the whole sample 
simultaneously, a fact which justifies the assumption that we can neglect the r 
dependence of 4 when deriving the threshold in $ 4. Performing a Frederiks transition 
with the boundary conditions given by equation (36), however, implies that the electric 
field must be applied parallel to the z axis, i.e. E= Ei. Such a field does not scale as l /r  
and we must, therefore, expect the transition to start at the outer boundary of the 
wedge. The twist elasticity between the layers, i.e. the B ,  terms will then stabilize the 
system and the mathematical treatment of the problem becomes more involved. 
Allowing 4 to be a function of Y also, we can solve the problem in terms of Bessel 
functions. This approach does not, however, allow us to determine a convenient 
expression for the threshold in terms of a given set of constants. We can circumvent this 
difficulty by only filling the space of the wedge between R and R+6R, demanding 
6R << R. In this case we can derive an approximate solution of the problem by assuming 
r z R over the whole sample, i.e. we neglect the twist elasticity between the layers (the B 3  
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Sc Frederiks transitions in a wedge 677 

terms) in the governing equations. From these considerations we derive the Frederiks 
threshold of the system as 

E,EO(d )EZ =7T2B1 -2B2(A,2 + Jii), (38) 

where we have introduced the average sample thickness 

( d  ) = ( R  + 6R/2)P. 

From equation (38) it can be seen that by only partially filling the wedge we can achieve 
a transition where the influence of the twist elasticity between layers can be neglected 
to a reasonable degree of accuracy. We would then be able to design an experiment 
which allows us to measure the elastic constant A , , + ~ , ,  also. Nevertheless, the 
requirement 6R << R combined with the need to keep the wedge angle as large as 
possible while the average thickness ( d )  should not exceed feasible values, may cause 
geometrical problems concerning the realizability of such an experiment. 

The temperature independent part K of the A constants has not yet been 
determined experimentally. As we have noted, the constant K does not enter any of the 
calculated thresholds and so it cannot be determined from any of our suggested 
experiments. If, however, we assume a boundary condition for which the director is 
confined parallel to the bounding plate but is allowed to point in any direction parallel 
to the plate, it may be possible to measure K in the following way. For the new 
boundary conditions proposed, the wedge configuration of figure 3 is no longer 
geometrically stable because the cylindrical layers can increase their radius by rotating 
the n-director thus causing a non uniform c-director configuration ~ ( a )  within each 
layer. The system thus exhibits two extreme configurations: 

(i) The configuration of figure 3, c = 9. Here all of the elastic energy is due to the 
bending of the layers and will be given by the term ( K  - A, ,O2)/(2r) in equation 

(ii) Flat layers, c(a) varying with S4#0 between the plates. Here all the elastic 
energy is due to c-director variations. 

Analysing this situation would make it possible to derive a threshold for switching 
between the two extreme situations, the expression of which would contain K .  The 
experimental determination of K would thus be possible from such a type of 
experiment. 

To conclude, in this paper we have demonstrated how, by performing experiments 
in suitable geometries, we can gain information about the elastic constants which are 
connected to the deformations of the layers of a S, liquid crystal, constants which are 
normally difficult to determine experimentally. The experiments which we have 
suggested may be difficult to realize for technical reasons, but seem to be among the 
most straightforward of those which can be proposed where the elastic constants of 
interest will appear in the analysis. 
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